

A 12-GHz, 12-W HJFET Amplifier with 48% Peak Power-Added Efficiency

Kohji Matsunaga, Yasuhiro Okamoto, and Masaaki Kuzuhara, *Member, IEEE*

Abstract—This letter describes a Ku-band power amplifier fabricated with a one-chip $0.45 \mu\text{m} \times 16.8 \text{ mm}$ GaAs-based heterojunction FET (HJFET), in which a 40.9 dBm (12.3 W) output power with 48% power-added efficiency (PAE) and 10.1 dB linear gain was achieved at 12 GHz. To our knowledge, this is the highest PAE, gain and output power combination achieved by a single FET power amplifier at this frequency.

I. INTRODUCTION

THERE is a growing demand for solid state power amplifiers (SSPA's) that are capable of delivering increased output power with reasonable efficiency. Power GaAs MESFET's with over 10 W output power have already been reported at Ku-band [1], [2]. However, because of the increased chip size and the limited gain performance of the GaAs MESFET's, further improvements in the output power from a single MESFET chip are becoming rather difficult.

Recently, a GaAs-based heterojunction FET (HJFET) has emerged as a viable candidate for microwave power applications. This device has demonstrated excellent performance of high output power, gain and PAE, making it attractive for various SSPA applications [3]–[11]. This is due to its inherent high drain current and high gain characteristics along with its high gate breakdown voltages [5], [7], [10]–[12]. To minimize power combining loss in the multiwatt power amplifiers, large-periphery devices capable of providing higher output power density with higher efficiency are of great interest.

To date, GaAs-based heterojunction FET's with small gate periphery have already demonstrated impressive power performance. These include an output power of 0.6 W, 75.8% PAE with 1.2-mm gate-width at 10 GHz [7] and 0.97 W, 70% PAE with 1.2-mm gate-width at 10 GHz [9]. More recently, impressive results have been reported on larger-periphery devices, in which an output power level of 6 W with PAE of greater than 50% has been achieved at 12 GHz [11], [13]. In order to further improve the output power level under high PAE, we have developed a larger gate-width HJFET with state-of-the-art output power and efficiency at Ku-band.

In this letter, a record power performance of an amplifier composed of a single HJFET chip with internal matching circuits is described.

II. HJFET AMPLIFIER

Step-recessed $0.45\text{-}\mu\text{m}$ gate-length HJFET's were fabricated on a 3-in. GaAs substrate. The layer structure is the same as that described in our previous report [13]. The active part of the MBE-grown HJFET structure consists of a 130\AA undoped $\text{In}_0.2\text{Ga}_0.8\text{As}$ channel layer sandwiched between two Si-doped $\text{Al}_{0.22}\text{Ga}_{0.78}\text{As}$ layers. The doping densities for the upper (80\AA) and the lower (40\AA) AlGaAs donor layers are 4.5×10^{18} and $4 \times 10^{18}\text{cm}^{-3}$, respectively. To achieve high gate-to-drain breakdown voltage BV_{gd} while maintaining high maximum drain current (I_{\max}), an n^+ /n dual cap layer and an undoped AlGaAs Schottky layer were employed [12]. After thinning the device thickness to $30 \mu\text{m}$, slot via-holes were etched underneath each source pad. The flip-side of the wafer was then plated with $20 \mu\text{m}$ of gold to reduce source inductance as well as to ensure low thermal resistance.

The device exhibited a drain saturation current of 270 mA/mm with I_{\max} of 550 mA/mm. I_{\max} was defined as a drain current measured at a gate bias of +1 V. The device exhibited a maximum transconductance of 370 mS/mm and a BV_{gd} of more than 12 V. Microwave S-parameter measurements, performed from 0.5 to 40 GHz for a 100- μm device, exhibited a peak power-gain cutoff frequency of 158 GHz. The power performance of a 1.05-mm gate-width HJFET evaluated at 12 GHz was 810-mW output power, 10-dB associated gain, and 60% PAE. The device was biased for Class AB operation at $V_d = 7 \text{ V}$.

A one-chip device with a total gate-width of 16.8 mm was used as a power amplifier building block. The output matching circuit was designed using a large-signal load impedance determined from load-pull measurements performed on a 1.05-mm HJFET. The input and output matching circuits consist of L-C-L section transformers, quarter wave transformers and low-impedance transmission lines. The input matching circuit was designed to achieve higher gain by using the small-signal equivalent circuit of a 16.8-mm HJFET. The low-impedance transmission lines were used to reduce the insertion loss in the matching circuits.

Fig. 1 shows the photograph of the internally matched HJFET power amplifier fabricated. The L-C-L section transformer is composed of a metal-insulator-metal capacitor with $150\text{-}\mu\text{m}$ -thick barium titanate and bonding wire inductors. The quarter wave transformer and low-impedance transmission lines were formed on a $250\text{-}\mu\text{m}$ -thick alumina substrate. The package size of the power amplifier, excluding the bias lines, was $16.5 \times 9.7 \text{ mm}^2$ with an actual circuit size of $5.0 \times 7.5 \text{ mm}^2$.

Manuscript received May 31, 1995

The authors are with Kansai Electronics Research Laboratories, NEC Corporation, Shiga 520, Japan
IEEE Log Number 9414548.

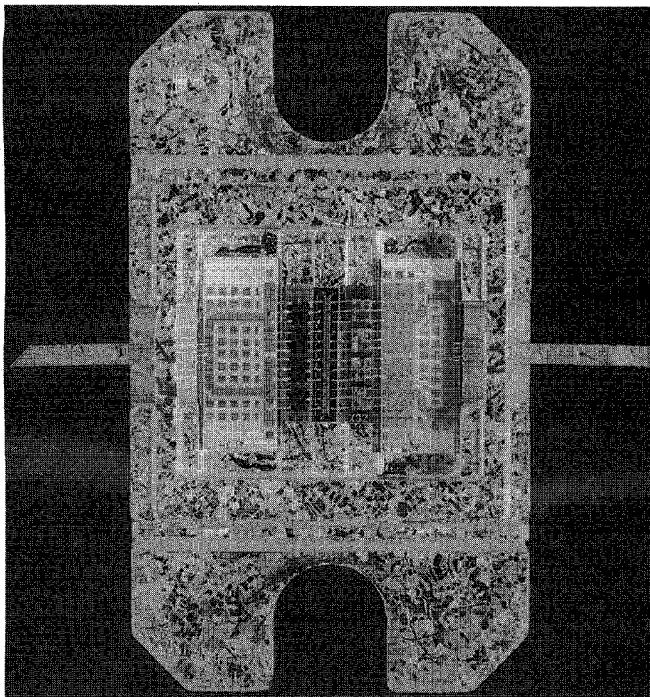
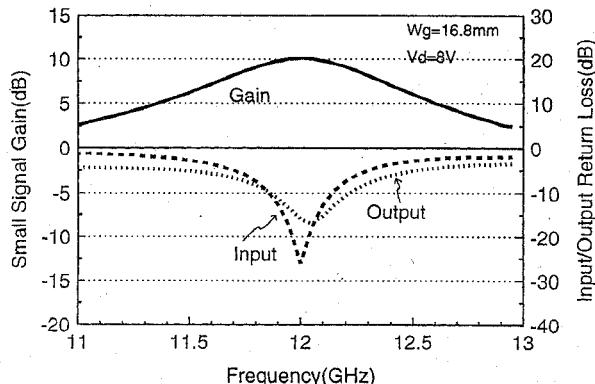



Fig. 1. Photograph of internally matched HJFET amplifier.

Fig. 2. Measured small signal response of power amplifier. $V_d = 8$ V.

III. AMPLIFIER PERFORMANCE

The power amplifier was mounted on a specially designed waveguide test fixture for evaluating gain, return loss and large-signal power characteristics. The fixture loss of 0.25 dB at 12 GHz was de-embedded from all measurement results.

Fig. 2 shows the measured small signal gain, input and output return losses of the power amplifier as a function of frequency. The small signal gain was 10.1 dB at 12 GHz with $V_d = 8$ V. The input and output return losses were less than -26 dB and -16 dB, respectively. The measured power characteristics are shown in Fig. 3. The fabricated power amplifier demonstrated an output power of 40.3 dBm (10.7 W) with 10.3 dB linear gain and 55% PAE with $V_d = 7$ V under C.W. operating conditions at 12 GHz. At $V_d = 8$ V, it delivered 40.9 dBm (12.3 W) output power with 10.1-dB linear gain and 48% PAE. To the authors' knowledge, this is the highest output power ever achieved from a single FET power amplifier at this frequency. At 1-dB gain-compression point, an

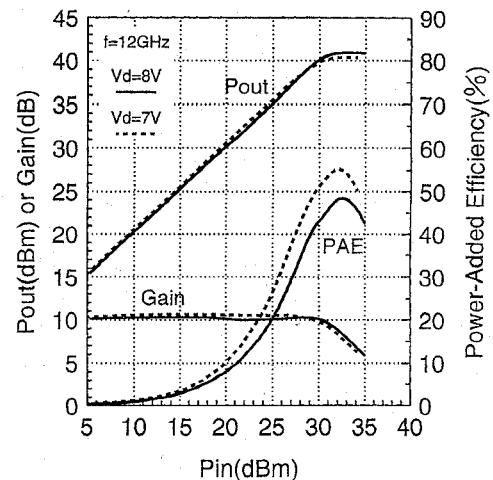
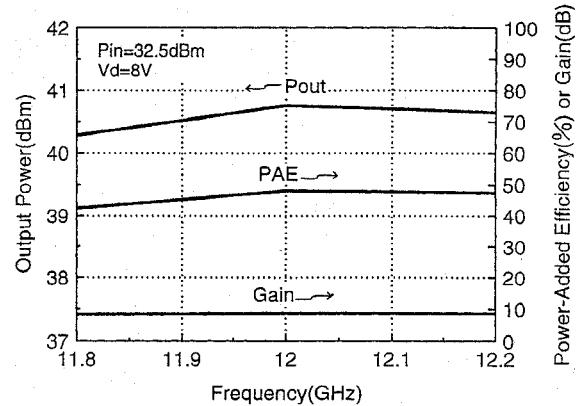


Fig. 3. Measured output power, gain, and power-added efficiency versus input power at 12 GHz for power amplifier. $V_d = 7$ and 8 V.

Fig. 4. Measured frequency response of power amplifier.

output power of 40.7 dBm (11.7 W) with an associated PAE of 47% was obtained with $V_d = 8$ V. These power performances can be attributed to higher drain current which was obtained by the optimized step-recessed structure, as well as to the use of low-impedance transmission line which significantly reduce the loss in the matching circuits at a designed frequency. The frequency dependence of the power characteristics were shown in Fig. 4. Over the 11.8–12.2 GHz frequency range, the amplifier exhibited 10.6–11.9 W output power with PAE of 42–48% and associated gain of 7.8–8.3 dB at $V_d = 8$ V with an input power of 32.5 dBm.

IV. CONCLUSION

High output power amplifier fabricated with a one-chip 0.45- μ m gate HJFET was demonstrated at Ku-band. The developed HJFET amplifier with 16.8-mm gate periphery delivered a 40.9-dBm (12.3 W) output power with 48% power-added efficiency and 10.1-dB linear gain at 12 GHz. To the authors' knowledge, this is the highest output power ever achieved from a single FET power amplifier at this frequency. Moreover, the developed HJFET exhibited more than 0.7-W/mm output power density, suggesting great potential of the HJFET approach for the future multi-10 W power amplifier

applications at Ku-band. The present power HJFET technology is promising for various satellite communication and radar system applications.

ACKNOWLEDGMENT

The authors would like to acknowledge Dr. T. Noguchi, Dr. T. Itoh, Dr. K. Wasa, and Dr. H. Ishiuchi for their supports and suggestions. They are also grateful to Dr. H. Abe for continuous encouragement throughout this work.

REFERENCES

- [1] Y. Yamada, H. Kuroda, H. Izumi, T. Soezima, H. Wakamatsu, and S. Hori, "X and Ku band high power GaAs FET's," in *IEEE MTT-S Dig.*, 1988, pp. 847-850.
- [2] S. Tsuji, K. Seino, S. Sakamoto, T. Sakayori, T. Takagi, M. Yamanoushi, S. Takamiya, and Y. Kashimoto, "13 watts power GaAs FET for 14.0-14.5 GHz band," in *Proc. 3rd Int. Symp. Asia-Pacific Microwave Conf.*, 1990, pp. 537-539.
- [3] K. Hikosaka, Y. Hirachi, and M. Abe, "Microwave power double-heterojunction HEMT," *IEEE Education*, vol. ED-33, no. 5, pp. 583-589, 1986.
- [4] P. M. Smith, L. F. Lester, P. C. Chao, B. R. Lee, R. P. Smith, J. M. Ballingall, and K. H. G. Duh, "Millimeter-wave double heterojunction pseudomorphic power HEMTs," in *IEEE IEDM Dig.*, 1987, pp. 854-856.
- [5] J. C. Huang, G. Jackson, S. Shanfield, W. Hoke, P. Lyman, D. Atwood, P. Saledas, M. Schindler, Y. Tajima, A. Platzker, D. Masse, and H. Stats, "An AlGaAs/InGaAs pseudomorphic high electron mobility transistor for X- and Ku-band power applications," in *IEEE MTT-S Dig.*, 1991, pp. 713-716.
- [6] P. M. Smith, W. F. Kopp, P. Ho, P. C. Chao, R. P. Smith, K. Nordheden, and J. M. Ballingall, "Ku-band high efficiency high gain pseudomorphic HEMT," *Electron. Lett.*, vol. 27, no. 3, 1991, pp. 270-271.
- [7] P. Saunier, W. S. Kopp, H. Q. Tserng, Y. C. Kao, and D. D. Heston, "A heterostructure FET with 75.8-percent power added efficiency at 10 GHz," in *IEEE MTT-S Dig.*, 1992, pp. 635-638.
- [8] H. Q. Tserng and P. Saunier, "A highly-efficient 7-watt 16 GHz monolithic pseudomorphic HEMT amplifier," in *IEEE MTT-S Dig.*, 1993, pp. 87-90.
- [9] S. Shanfield, A. Platzker, L. Aucoin, T. Kazior, B. I. Patel, A. Bertrand, W. Hoke, and P. Lyman, "One watt very high efficiency 10 and 18 GHz pseudomorphic HEMT's fabricated by dry first recess etching," in *IEEE MTT-S Dig.*, 1992, pp. 639-641.
- [10] M. Y. Kao, S. T. Fu, P. Ho, P. M. Smith, P. C. Chao, K. J. Nordheden, and S. Wang, "Very high voltage AlGaAs/InGaAs pseudomorphic power HEMTs," in *IEEE IEDM Dig.*, 1992, pp. 319-321.
- [11] S. T. Fu, L. F. Lester, and T. Rogers, "Ku-band high power high-efficiency pseudomorphic HEMT," in *IEEE MTT-S Dig.*, pp. 793-796, 1994.
- [12] K. Matsunaga, N. Iwata, and M. Kuzuhara, "High power pseudomorphic double-heterojunction field effect transistor with 26 V gate-drain breakdown voltages," in *Proc. 19th Int. Symp. GaAs and Related Compounds*, 1992, pp. 749-754.
- [13] K. Matsunaga, Y. Okamoto, and M. Kuzuhara, "Highly-efficient 6.6 W 12 GHz HJFET for power amplifier," in *IEEE IEDM Dig.*, pp. 895-898, 1994.